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Eye Pattern Evaluation in High-Speed Digital
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Abstract—A method for simulating the eye pattern of high-speed
digital signals propagated on printed circuit boards using multi-
conductor transmission-line modeling is proposed in this paper.
The approach takes into account the frequency-dependent prop-
erties of the dielectric materials of the board and of the conduc-
tors. The validation is performed by comparing the modeling with
measurements taken from the literature, and directly performed
on test boards specially design for this study.

Index Terms—Dielectric constant, dissipation factor, frequency-
dependent dielectric, signal integrity.

I. INTRODUCTION

M ODERN broad-band telecommunication systems are
characterized by optical interfaces with high data

transfer rates. At present, optical signals at 10 Gb/s are rela-
tively commonplace in transmission equipment. These optical
signals are converted into electrical digital signals at high bit
rates, which are directly managed by the high-speed digital
devices. The present generation of high-speed digital chips
for telecommunication use high-speed serial links (HSSLs)
up to 3.125 Gb/s to transport data on printed circuit boards
(PCBs). HSSLs have become a necessity in the modern digital
boards because they allow one to exchange a large amount of
data between application-specific integrated circuits (ASICs),
reducing the pin count on the semiconductor device packages
so as to obtain cost savings. The next step in the semiconductor
industry is to realize chips operating with clock rates up to 10
GHz by 2010 [1]. This innovation in the semiconductor world
will produce a new challenge in the PCB world, in particular,
designing board interconnections with very high performances
in the frequency range up to 20 GHz. Differential signaling will
be employed to accomplish this due to its lower susceptibility
to common mode noise than single-ended signaling, which
maximizes noise margins in the link.

As the bandwidth of the HSSLs goes beyond 1 GHz, signal
integrity (SI) problems become a primary concern for PCB de-
signers [2], [3]. One of the most common SI problems is the at-
tenuation of high-bandwidth digital signals over the PCB trace
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lengths. At high bit rates, low-cost FR-4 materials, a mix of glass
fiber and epoxy resin, currently used in the telecommunication
and computer industry to fabricate PCBs [4], is characterized
by high dielectric loss factors, so that the frequency-dependent
losses over the typical PCB trace lengths are too large. To over-
come this problem, which causes amplitude fluctuations and
jitter on the signals along the traces, alternative lower dielec-
tric loss PCB materials are used [5]–[7].

Usually, SI problems along a trace, due to their nature, are
studied in the time domain, using, for example, eye pattern mea-
surements. The eye pattern allows the quality of the signal at the
end of a trace to be characterized. The larger the eye is opened,
the better the signal quality is at the termination end of the line.
Amplitude distortion of the signal along the trace, due to discon-
tinuities or losses, reduces the eye opening and the noise margin,
so that the receiver at the end of the line has difficulties in cor-
rectly detecting the signal. The eye pattern width gives informa-
tion about the time interval where the data can be sampled at the
receiving end without problems due to intersymbol interference
(ISI). Such a width can be reduced by the jitter due to the dis-
persion along the interconnection.

Although time-domain measurements can be interpreted
easily and are directly relevant to the function of the digital
device, frequency measurements are being increasingly used to
characterize signal propagation on PCBs and study SI problems
[7]–[9]. This characterization is more accurate and reliable
than that in the time domain due to the higher dynamic range
and more robust calibration procedure of a network analyzer,
as compared to a time-domain reflectometer (TDR). Moreover,
time-domain magnitudes can be obtained from frequency-do-
main measurements by using inverse fast Fourier transforms
(IFFTs). The eye pattern, e.g., at the end of a trace, is obtained
by convolving the IFFT of the scattering parameter along
the trace, measured in the frequency domain, with a repetitive
bit pattern. When the impact on SI of the properties of the
dielectric material [relative permittivity and dissipation
factor ] must be assessed, the prediction of the eye
pattern is needed in the design cycle prior to building physical
boards. In this case, the approach cited above, which is based
on the measurement of , is unsatisfactory.

The Telegrapher’s equations can be solved for the source and
load voltages using multiconductor transmission line (MTL)
modeling [10], assuming the model holds for microstrip and
stripline structures. The fundamental assumption for all trans-
mission line formulation and analysis is that the field structure
surrounding the conductors obeys a TEM structure; the trans-
mission lines considered for this work have cross-sectional di-
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Fig. 1. Schematic flow chart for the TFTD method.

mensions smaller than the minimum wavelength associated with
the spectra of the propagating signal and, hence, can be assumed
to be TEM structures. Then, from the load voltage, it is possible
to extract the eye pattern.

The objective of this paper is the development of a proce-
dure to predict the eye pattern due to a digital bit pattern prop-
agating on microstrip and stripline structures with single-ended
and differential terminations without relying on experimental
data. The frequency-dependent properties of the dielectric are
included in the formulation. The proposed procedure is com-
prised of three primary steps: 1) extraction of the per unit length
(p.u.l.) parameters; 2) solution of the MTL equations; and 3) eye
pattern formation. The procedure is developed in frequency do-
main by applying atime-to-frequency-to-time domain(TFTD)
approach for the solution of the MTL equations. This approach
is described in Section II. Section III illustrates eye pattern sim-
ulations and measurements in order to validate the approach and
to formulate guidelines for the digital design. Conclusions are
drawn in Section IV.

II. TFTD APPROACH

The MTL equations are first solved in frequency domain
in the TFTD approach. The frequency spectrum of the source
voltage is obtained by means of a fast Fourier transform (FFT)
of a pseudorandom bit sequence (PRBS) generated in the time
domain. The time waveforms of the voltages and currents along
the line and across the loads are obtained by means of an IFFT,
as schematically depicted in the flow chart of Fig. 1. Then,
consider an conductor transmission line of length, as
shown in Fig. 2(a). Due to the multiconductor nature of the
line, the voltage, current, and impedance variables are vectors
or matrices, which will be indicated by bold letters. and
are the phasor voltage and internal impedance of the voltage
source, respectively, is the load impedance, and , and

, are the voltage and current phasors at the two ends of
the MTL.

Fig. 2. Equivalent circuit for the MTL modeling. (a) Single-ended and
(b) differential terminations.

A. The Parameter Extraction

The p.u.l. matrices for the impedance and admittance
must first be evaluated to construct the MTL model. The
matrix takes into account the series effects of the resis-

tance and inductance of the conductors. The evaluation of
is not discussed in this work, and the reader is referred to [10]
for more details. The model adopted in this work allows the en-
tries of the matrix to be analytically evaluated at every
frequency considered. The admittance matrix given by

(1)
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(a)

(b)

Fig. 3. (a) Eye patterns for a differential line: results from [7], vertical axis between 0.0 and 1.0 V, horizontal axis between 0.0 and 0.50 ns. (b) Eye patterns for
a differential line: simulated data using the proposed TFTD approach.

is related to the frequency-dependent properties of the dielec-
tric material. Starting from a knowledge of the dielectric permit-
tivity , and the dissipation factor , measured at
the discrete frequencies , the losses in the dielectric material
are included in by solving for the complex capacitance
matrix for a medium having complex permittivity

(2)

Then, the standard procedure for calculating the p.u.l. capaci-
tance matrix is modified by substituting with . Once

is evaluated, then in (1) becomes

(3)

with and .
The elements of the p.u.l. matrices and are re-

quired at frequencies different from in the MTL equation
solution process. For the evaluation of the admittance matrix,
an interpolation among the values of and of is
needed to compute the new values of and , in order
to obtain from (3). This interpolation should be done
taking into account the specific characteristics of the measure-
ment techniques for and . Standard techniques
for measuring are relatively insensitive to measurement er-
rors [13]. Consequently, the measured values do not have a sig-
nificant variation about the correct value and show a linear trend.
In this case, a linear interpolation of the samples is suitable to
compute the new values of permittivity. By contrast, the mea-
surement of the loss tangent is very sensitive to measurement

errors [13], and the measured values are scattered about the ac-
tual trend. In this case, a simple linear interpolation of the sam-
ples would introduce an unrealistic behavior of the material. For
this reason the values of are fitted using a least-square
error-fitting procedure [14]. An interpolating two-exponential
function as (4) was used at the beginning

(4)

but for all the material considered in this work a single expo-
nential, with the parameters , ,
and , was found to be adequate.

B. The MTL Solution

The phasor voltages and currents at the two ends of the line
are related with the chain parameter matrix as

(5)

(6)

The expressions for the evaluation of the matrix entriesin
(5) and (6) are detailed in the Appendix. In the following the
development, the notation is used. Equations
(5) and (6) along with the matrix equations for the terminations
allow the voltages , , and and the currents and

at the source and load ends to be evaluated as

(7a)

(7b)

(7c)

(7d)
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where

(8a)

(8b)

Equations (7a)–(7d) are then solved at each frequency, con-
tained in the frequency spectrum of the PRBS, and the har-
monic components of the termination voltages are obtained. Fi-
nally, the corresponding waveforms in time domain are com-
puted using an IFFT, and the eye pattern is generated.

The line configuration for differential terminations is shown
in Fig. 2(b). The matrix equation for a differential source is

(9a)

and for the differential load

(9b)

where

(10a)

(10b)

(10c)

and is the differential source voltage, and is an offset.
By substituting (9) into (5), the source and load voltages and
currents are then

(11a)

(11b)

(11c)

(11d)

where

(12a)

(12b)

The source and load voltage and current solutions for the single-
ended and differential terminated cases are then complete.

III. EYE PATTERN MEASUREMENTS ANDSIMULATIONS

The validation of the proposed procedure was carried out by
comparing the results with those obtained from other techniques
and from measurement. First, eye pattern results from [7] are
compared with those simulated using the MTL approach con-
sidered in this work. Fig. 3(a) shows the eye pattern for a differ-
ential line on an FR4 board (Nelco N4000-6, fiber glass/epoxy
resin). The data rate was 2.5 Gb/s. This eye pattern was gen-
erated from the measurement of the mixed mode-parameter
data on a differential line by convolving the time-domain im-
pulse response of with the standard K28.5 bit pattern
(1 100 000 101). Fig. 3(b) shows the eye pattern computed by
means of the TFTD approach. The appropriate metrics of the
eye pattern are: 1) its maximum eye opening (MEO), defined
as the maximum difference, at the same time instant, between
points in the interior of the eye patter; and 2) its maximum eye
width (MEW), defined as the maximum difference, at the same

TABLE I
COMPARISONBETWEENEYE PATTERNS IN FIG. 3(a)AND (b)

(a)

(b)

Fig. 4. The eye pattern (a) measured and (b) computed using the TFTD
approach.

voltage level, between two points in the interior of the eye pat-
tern. These two points correspond to the decision threshold, i.e.,
the region of the eye pattern in which the bits’ fronts intersect.
A comparison between the results from [7] and the results cal-
culated using the MTL approach is summarized in Table I.

A second comparison was performed between the MTL ap-
proach and measurements. In a single-ended 50 -stripline, an
HP 70841B pattern generator was used to launch a PRBS,
nonreturn to zero (NRZ), coded at 2.5 Gb/s. The board dielec-
tric material had frequency-dependent values ofand loss tan-
gent similar to those of the class of Rogers-like resins. The
trace was terminated in the 50 —input impedance of the Tek-
tronix Communication Signal Analyzer CSA 8000, used to dis-
play the eye pattern at the load. The measured results are shown
in Fig. 4(a). The trace was then terminated in a matched load.
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TABLE II
COMPARISONBETWEEN EYE PATTERNS IN FIG. 4(a)AND (b)

The eye pattern calculated with the MTL approach is shown in
Fig. 4(b), and a summary of the comparison of the MEO and
MEW for this configuration is given in Table II.

The procedure was further validated using a ten-layer test
board that was a mix of glass fiber and epoxy resin (an FR4-like
material) denoted Board and an eight-layer test board in
glass reinforced hydrocarbon/ceramic laminates and pre-preg
with low dielectric losses, denoted Board. These boards have
been specifically designed for these tests and are not made
to accommodate active signal drivers, because of this there is
no need of power planes but only ground (GND) planes. The
PCBs were 50 cm in length and 40 cm in width. The layer
stack-up is given, together with the layer and plane thicknesses
for Board and Board , in the photographs in Fig. 5(a)
and (b), respectively. The photographs were generated with
an optical microscope. On each board, 50-single-ended
and 100- differential edge-coupled microstrip and stripline
traces, with lengths of 50 cm were laid out. To compare the
eye-pattern measurement with the MTL simulations, only
50- single-ended microstrip and striplines were considered.
The trace dimensions of the two cases were different in order
to control the value of the nominal characteristic impedance.
For Board , the trace widths were m for the
microstrip (Layer 1), and m for the stripline
(Layer 3), and for Board , m (Layer 1), and

m (Layer 3). Half-ounce copper was used for
the metallization thickness. These values are in the range of
those commonly used in present high-speed digital systems
technology. The above mentioned pattern generator was con-
nected to the boards through SMA connectors, and the traces
were driven with a PRBS, NRZ, coded at 2.5 Gb/s. The
bit sequence swing was 500 mV and the nominal rise/fall time
of the bit pulse was 120 ps, as shown by the eye pattern of
the input bit sequence in Fig. 6, measured at the output of the
generator. As shown in Fig. 6, the presence of jitter inherent
to the input sequence is apparent. This jitter was subtracted
from that measured at the end of the line, in order to correctly
estimate the effects of the frequency-dependent properties of
the board material on the integrity of the digital signal.

The frequency-dependent properties of the Boardmaterial
are shown in Fig. 2. The dielectric laminate of Boardexhibits
an almost constant dielectric constant and loss tangent over a
broad frequency range as shown in Fig. 7. The reference values
at 10 GHz are for the laminate , ,
and for the pre-preg - , assuming for the latter
the same loss tangent as the laminate [15].

Figs. 8 and 9 show the measured eye pattern at the end of the
microstrips and striplines on Board and Board . The differ-
ence between the eye pattern at the ends of the microstrip and
stripline traces on the same board is negligible. In these cases,
the maximum-eye-opening and maximum-eye-width values of
the four traces almost coincide. The role of the ISI in displacing

Fig. 5. An optical microscopic photograph of the layer stack-up cross section.
(a) BoardA. (b) BoardB.

the actual data transition times from the ideal, i.e., the time jitter
of the data signals at the end of the traces, is also illustrated in
the eye patterns shown in Figs. 8 and 9. The time jitter can be
evaluated as

(13)

where is the time interval defined as /bitrate. For
this study, ps for 2.5 Gb/s. One measure of the eye
pattern opening (or closing) is the percentage difference
between the MEO values of Board and Board , defined as

% % (14)
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Fig. 6. The eye pattern of the input PRBS,2 � 1, NRZ coded, with a rise
time= 120 ps, and data rate= 2.5 Gb/s. (Scale: 100 ps/div, 60 mV/div.)

Fig. 7. Measured and linearly interpolated valuestan �(!) for the
glass-reinforced, hydrocarbon/ceramic laminates material. (a)" (!).
(b) tan �(!).

Considering the eye patterns in Figs. 8(b) and 9(b), the mea-
sured values are for Board mV, for Board

(a)

(b)

Fig. 8. Measured eye pattern at the end of the transmission line. (a) Microstrip
line on Layer 1 of BoardA. (b) Stripline on Layer 3 of BoardA.

mV, and from (14) %. This last
value is in the range of that obtained by considering the eye pat-
tern height values reported in [7, Table 2] for similar materials
such as N4000-6 and Metclad. From these values, one obtains

%.
From these considerations, one can infer that for the specific

configuration of a digital signal at 2.5 Gb/s transmitted on a PCB
trace 50-cm long, the dielectric losses of the material are not
a concern for the SI if a 14% closing of the eye pattern is ac-
ceptable by the designer. Consequently, for data rates slower
than 2.5 Gb/s, and traces shorter than 50 cm, it may be suf-
ficient to use an ordinary low-cost FR4 dielectric material to
lay out traces with controlled impedance on a board, without
resorting to more expensive, low-loss dielectric materials. The
proposed MTL modeling approach allows the SI attributes of
the structures to be assessed for different board materials and
traces’ length. The computed values of MEO for two striplines
with cross sections and dielectric materials identical to those of
Board and Board are shown in Fig. 10. In this case, though,
the line lengths were varied from 25 to 90 cm. The computed
values of MEW for the same structures and boards are shown in
Fig. 11. From Fig. 10, one can predict that, for the configurations
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(a)

(b)

Fig. 9. Measured eye pattern at the end of the transmission line. (a) Microstrip
line on Layer 1 of BoardB. (b) Stripline on Layer 3 of BoardB.

Fig. 10. Predicted MEO for different lengths of the stripline at 2.5 Gb/s.

considered, the eye opening (measured by the MEO values) de-
grades for traces length greater than 55–60 cm in FR4-like ma-
terials. The same trend is found in Fig. 11 for the temporal width

Fig. 11. Predicted MEW for different lengths of the stripline at 2.5 Gb/s.

of the bit pattern although the magnitude of the MEW values is
not a concern in this case. As expected by its values of
and , the glass reinforced hydrocarbon/ceramic mate-
rial exhibits a better performance at the present bit rate in all
the considered range of lengths. From Fig. 10, degradation is
less significant for the signals traveling on large backplanes of
Board material than Board material.

IV. CONCLUSION

A modeling approach for evaluating the impact of the
frequency-dependent properties of dielectric laminates on SI in
high-speed PCBs at the design stage can be very beneficial. The
time and expense of many measurements can be minimized. In
this work, an approach based on MTL modeling that requires
only a knowledge of the dielectric constant and dissipation
factor versus frequency has been presented. The approach
compares well with other published results and measurements.
The measurements, carried out on specially designed test
boards, showed that digital signals at data rates lower than 2.5
Gb/s, transmitted on traces with controlled impedances and
lengths shorter than 50 cm, do not require PCB materials with
low dielectric losses. For the considered configurations and
materials, currently used in the telecommunications and com-
puter industries, a variation of eye pattern opening of around
14% has been measured and computed between a standard,
low-cost FR4 material and a low-loss material. Although the
issue of whether an eye opening degradation is a concern or not
rests on the bit error rate (BER) design requirement for the link
in question, the quantitative knowledge of such a degradation
is beneficial for a BER estimation. The MTL approach detailed
herein can be used for further investigations on the SI impact
of the frequency-dependent losses of conductors and dielectric
materials for bit rates higher than 2.5 Gb/s. The proposed
method allows for the evaluation of the MEO and MEW for
various “what-if” scenarios to detail behavioral trends of the
effects on the digital signals.
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APPENDIX

The expressions for evaluating the chain parameter matrices
are given by [10]

(A1a)

(A1b)

(A1c)

(A1d)

where is the modal transformation matrix defined by

(A2)

The matrix is the diagonal matrix of the modal propagation
constants , and and are the characteristic impedance
and admittance matrices, respectively, given by

(A3a)

(A3b)
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